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High-throughput biomolecular profiling techniques such as transcriptomics, proteomics and

metabolomics are increasingly being used in in vivo studies to recognize and characterize effects of

xenobiotics on organs and systems. Of particular interest are biomarkers of treatment-related

effects which are detectible in easily accessible biological fluids such as blood. A fundamental

challenge in such biomarker studies is selecting among the plethora of biomolecular changes

induced by a compound and revealed by molecular profiling, to identify biomarkers which are

exclusively or predominantly due to specific processes. In this work we present a cross-

compartment correlation network approach, involving no a priori supervision or design, to

integrate proteomic, metabolomic and transcriptomic data for selecting circulating biomarkers.

The case study we present is the identification of biomarkers of drug-induced hepatic toxicity

effects in a rodent model. Biomolecular profiling of both blood plasma and liver tissue from

Wistar Hannover rats administered a toxic compound yielded many hundreds of statistically

significant molecular changes. We exploited drug-induced correlations between blood plasma

analytes and liver tissue molecules across study animals in order to nominate selected plasma

molecules as biomarkers of drug-induced hepatic alterations of lipid metabolism and urea cycle

processes.

Introduction

The application of high-throughput molecular profiling tech-

niques such as transcriptomics, proteomics and metabolomics

for in vivo toxicological studies is currently an active area of

exploration.1–5 Of particular promise is the potential of mole-

cular profiling for identifying novel biological markers (bio-

markers) of toxicity-related tissue pathogenesis, particularly in

easily accessible biological fluids such as blood or urine.

Indeed, accessible biomarkers for more accurate and earlier

assessment of the potential of novel pharmaceutical agents to

act as toxicants in man are critical to continued improvement

of drug development and safety evaluation.

In particular, integrating multiple, disparate high-through-

put data sets for biomarker discovery is an area of active

research in the pharmaceutical and life sciences communities,

and is the subject of the present study. In particular, we

consider here the case of biomarkers for drug-induced liver

injury as an exemplary and important field of such research.

Biomarkers of adverse hepatic effects that are detectible in

accessible biological fluids and which are invariant or highly

conserved across species are particularly of interest, due to

their availability for repeated measurements and potential for

comparison across preclinical models and human subjects.

Indeed, candidate biomarkers of liver toxicity derived from

molecular profiling of biological fluids such as blood or urine

will need to share many characteristics of established hepatic

injury markers, such as the transaminase enzymes in blood.6

However, in contrast to transaminase enzymes, which become

manifest primarily after frank tissue damage has occurred,

novel molecular biomarkers which can be shown to be specific

to early alterations of normal hepatic function promise pre-

dictive utility as well as indication of specific biochemical

processes responsible for, or leading to, liver injury.

Recently a number of groups have reported on in vivo

studies of molecular profiling of blood or urine components

for the purpose of identifying drug-induced hepatotoxicity

biomarkers.7–9 Such experiments routinely analyze and quan-

tify hundreds of biomolecular species from each sample. An

inherent challenge of such studies is discerning which of the

plethora of observed biomolecular changes in the biological
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fluid matrix are exclusively or predominantly of liver origin

and reflective of hepatotoxic processes, and which are second-

ary or unrelated effects due to pharmacology, acute phase

response, systemic stress and the like. One key objective of the

present study is to address this challenge. In particular, we

describe a novel approach to selecting and qualifying mole-

cules for biomarkers among all observed biomolecular altera-

tions in an experiment, and establishing plausibility of such

biomarkers in the context of hepatotoxicity.

To these ends, we introduce and demonstrate a new, em-

pirical, systems-based approach to relating observed biomole-

cular changes in biological fluids to drug-induced toxicity

effects in liver tissue for in vivo models, using a cross-tissue

correlation network-based integration of molecular profiling

data. Previous molecular profiling approaches have typically

investigated the differential behavior of individual profiled

analytes, characterized by univariate or multivariate metrics

of ‘group mean fold-change’ or equivalent, and associated

confidence values. These approaches neglect inherent biologi-

cal variability by averaging analyte concentration levels across

organisms within a pre-defined experimental group, with the

underlying assumption that similar or identical genotypes

should produce similar steady-state responses to treatment

under controlled conditions. In the current study we exploit

the subtle but inevitable biological variability across study

subjects to integrate different types of molecular profiling data

and elucidate additional information about molecular re-

sponses to a toxicant. Although such data integration requires

extremely stringent tolerances on bioanalytical platforms,

namely that the measurement variance be consistently less

than the individual-to-individual biological variability, the

additional information is essential in detecting subtle and

early modulations of biochemical pathways and mechan-

isms.10–15 Correlation analyses are also appealing for broad

molecular profiling analyses in that they are not dependent on

absolute quantification of analytes.

In this study we identify candidate biomarkers in blood

plasma which we show to be empirically correlated to altera-

tions of normal hepatic function and to drug metabolism

within liver tissue. We further provide a correlation net-

work-based integration of molecularly profiled components

spanning liver tissue and blood plasma to explore the origins

of the candidate biomarkers. Comprehensive molecular profil-

ing analyses were carried out on liver tissue and blood plasma

of Wistar Hannover rats administered different dosage regimes

of an experimental drug compound which previously had been

shown to induce liver steatosis. Molecular profiling of liver

tissue samples involved cytosolic and membrane-bound pro-

tein profiling using liquid chromatography and mass spectro-

metry, endogenous metabolite analysis using multiple liquid

chromatography-mass spectrometry methods, and gene ex-

pression profiling using high density oligonucleotide micro-

arrays. Blood plasma from the same animals was also profiled

using mass spectrometric techniques to measure endogenous

metabolite levels, as well as conventional clinical chemistries

and hematology measurements. Correlation networks derived

from these analyses generated a number of candidate plasma

biomarkers of drug-induced processes, in particular of pertur-

bations in lipid metabolism and the urea cycle, and have

provided new insights into adverse processes related to those

candidate biomarkers which merit further investigation.

Results

To characterize the effects of the experimental compound on

endogenous liver and plasma analytes after one and seven days

of treatment, rats were administered the drug at dosages of

200 mg kg�1 per day for 7 days, 20 mg kg�1 per day for 7 days

or 200 mg kg�1 for a single day, with five male rats per dosage

group. Histopathology examination revealed centrilobular

hepatosteatosis in rats treated with 200 mg kg�1 per day of

the compound for seven days. Slight centrilobular hypertro-

phy of liver cells was also observed in these animals. Of the five

rats administered 200 mg kg�1 for a single day, two exhibited

positive multifocal liver fat stains, as did two of the five rats

administered 20 mg kg�1 per day of the compound for seven

days. No other organ toxicities were observed in the treatment

groups. In addition to the three treatment groups, five male

rats were administered the vehicle solution for seven days as a

control group. No liver pathology was observed in animals in

this vehicle-administered control group.

The only statistically significant blood chemistry alterations

relative to the vehicle-administered group were observed in the

group administered 200 mg kg�1 per day for 7 days, consisting

of a +19% � 4% increase in aspartate aminotransferase

(AST) levels (pFDR o 0.05), and a �68% � 23% decrease in

triglyceride levels (pFDR o 0.05). Blood glucose, urea, crea-

tine, alanine aminotransferase, bilirubin, cholesterol, albumin,

sodium and potassium were not statistically significantly

different between the vehicle group and any other treatment

group. No treatment-related hematology alterations were

noted apart from a slight increase in neutrophil and monocyte

counts in the group receiving 200 mg kg�1 per day doses for

seven days.

Molecular profiling of plasma samples using mass spectro-

metry platforms, and of liver samples using mass spectrometry

and oligonucleotide microarray platforms, yielded a plethora

of biomolecular changes as a result of administration of the

compound. Specifically, in the comparison of vehicle-adminis-

tered rats and rats administered the compound at 200 mg kg�1

per day for 7 days, at a univariate significance level of pFDR o
0.05 over 200 altered endogenous plasma metabolites were

observed, over 300 liver gene transcript changes were detected,

and over 400 liver peptides exhibiting abundance change were

identified. Similarly, in the 200 mg kg�1 for a single day and

20 mg kg�1 per day for 7 days dosage groups, over 500 and

over 80 analyte abundance changes, respectively, relative to

the vehicle-adminstered group at a univariate significance level

of pFDR o 0.05, were observed across all bioanalytical plat-

forms.

In order to prioritize among the abundance of observed

biomolecular changes induced by drug exposure, and to select

plasma-based biomarkers related to changes within liver tis-

sue, the partial correlation matrix comprising all of the

measured analytes in plasma and tissue was calculated, using

all three dosage groups (a total of fifteen animals) and con-

trolling for group mean effects.16 This yielded 172 correlations

spanning analytes in plasma and analytes in liver, and 17 327
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correlations among solely liver analytes, at a significance for

correlations of pFDR o 0.15. The overall correlation network

derived from the correlation matrix was not entirely con-

nected; there were many disjoint sub-networks making up

the larger network. The focus in this work was on the sub-

networks which included the 172 correlations spanning plasma

and tissue. The number of sub-networks for consideration was

further reduced by requiring that at least one plasma analyte

member of each of these sub-networks exhibit a statistically

significant (pFDR o 0.05) univariate change between the

vehicle-administered group and the group receiving 200 mg

kg�1 per day for seven days. This resulted in nine disjoint

networks, of which two are discussed in the present report.

The two networks discussed here were selected because they

each comprised a larger number of analytes than any of the

other seven networks.

Correlation network centered upon hepatic

UDP-glucuronosyltransferase and plasma lipids

One plasma-to-liver correlation network which was found to

comprise plasma analytes as well as liver analytes was centered

upon hepatic UDP-glucuronosyltransferase polypeptide A1

(Ugt1a1) and a number of plasma lipids. This correlation

network was pursued because of the established role of Ugt1a1

in hepatic drug metabolism processes,17 and as such this

network most likely reflects liver exposure to the compound.

Fig. 1A is a visualization of the correlation matrix centered

upon hepatic Ugt1a1, illustrating significant correlations both

to other liver analytes as well as to analytes observed in

plasma. In Fig. 1A, each observed protein, gene transcript

and endogenous metabolite is assigned a node co-ordinate in

the two-dimensional plane, and the links between nodes

represent correlation values between pairs of nodes. The net-

work in Fig. 1A has been constrained to comprise only

analytes which are separated by one correlation link from

Ugt1a1; apart from this constraint this correlation analysis is

unsupervised. In order to illustrate a representative data set

which gives rise to one of the correlation links in Fig. 1A,

Fig. 1B shows a plot of the relative abundances of a plasma

triglyceride with fatty acid composition of 52 carbon atoms

and four double bonds (52:4 TG) and a liver peptide of

Ugt1a1, both of which are represented in the network of

Fig. 1A; these two analytes were inversely correlated with a

partial correlation value of rpartial = �0.86 (pFDR o 0.05).

Levels of liver Ugt1a1 protein, as measured by relative

quantification of three distinct peptides, were found to be

Fig. 1 (a) Ugt1a1-Centered correlation network. In the figure, plasma analytes are to the left, and liver tissue analytes are to the right; topological

distance contains no information. Only those analytes within one correlation link fromUgt1a1 are shown, and correlations among plasma analytes

are not shown. Network nodes are colored according to significance in the test between the vehicle-administered group and the group receiving

200 mg kg�1 per day for 7 days. Analytes in this network are listed in Table 1 and Table 2. Lipid nomenclature indicates total number of carbon

atoms and double bonds of all fatty acid chains, separated by a colon; TG= triglyceride, CE= cholesteryl ester. (b) Representative scatter plot of

normalized abundances, adjusted for group means (see Methods), of 52:4 TG in the plasma (on the abscissa) and the Ugt1a1 liver peptide

AMEIAEALGR (ordinate) of the fifteen drug treated animals in the study. Closed circles (K) represent animals receiving 200 mg kg�1 per day for

7 days, diamonds (E) represent animals receiving 200 mg kg�1 for 1 day, and squares (’) represent animals receiving 20 mg kg�1 per day for

7 days. The correlation trendline illustrates the negative partial correlation between these two measurements. Axis units are arbitrary units.
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significantly elevated relative to the vehicle-administered

group, with maximal level in the 7-day 200 mg kg�1 per day

treatment group (Fig. 2). The relative level of the gene

transcript for Ugt1a1 also exhibited similar increased abun-

dance in all treated groups. Another member of the UDP-

glucuronosyltransferase family, Ugt2b12, as measured by the

proteomic liquid chromatography-mass spectrometry

(LC-MS) platform, is also present in the network and is

positively correlated to Ugt1a1 and up-regulated upon treat-

ment; Ugt2b12 appears as two nodes in the network because

the detected proteolytic peptides map into two distinct poly-

peptide isoforms.

As shown in Fig. 1A and Table 1, there were twelve analytes

measured in plasma which were found to be correlated to

hepatic Ugt1a1 protein with an absolute correlation value of

|rpartial| 4 0.60 and a false discovery rate adjusted p-value for

correlation of less than 0.15. Eleven of these plasma analytes

are plasma triglycerides composed of mono- or poly-unsatu-

rated fatty acids, all of which were found to be inversely

correlated to hepatic Ugt1a1, while an arachidonic acid

(20:4) containing cholesteryl ester was observed to be posi-

tively correlated to Ugt1a1 levels (Table 1).

All eleven of the Ugt1a1-correlated plasma triglycerides

were uniformly and statistically significantly lower by approxi-

mately 50% in abundance in the plasma of the 7-day treated

animals compared to the vehicle-administered animals

(Fig. 3A). This level of decrease was similar to that of the

triglyceride blood chemistry measure. In contrast, the Ugt1a1-

correlated 20:4 cholesteryl ester was significantly elevated in

plasma after 7 days of treatment, +148% � 51%, pFDR o
0.05, relative to the vehicle-administered group.

Upon the observation of the significant inverse correlation

of the eleven plasma lipids to Ugt1a1, we proceeded

to examine the corresponding abundances of these lipid

species in the liver tissue (Fig. 3A and 3B). With the exception

of 49:3 TG and 20:4 CE, all of the plasma lipids correlated

to Ugt1a1 were also able to be measured in liver tissue in the

course of this study. Six of the Ugt1a1-correlated triglycerides

were observed to exhibit significant accumulation in the

liver tissue of the 7-day treatment group animals compared

to the vehicle-administered animals (Fig. 3A). In contrast,

three triglycerides, 50:1 TG, 50:2 TG, and 50:3 TG,

were found to be significantly depleted in liver tissue upon

7 days of treatment relative to the vehicle-administered

group (Fig. 3A).

After a single day of administration, the effects of the

compound on the Ugt1a1-correlated plasma triglycerides were

found to be quite different than the effects observed after seven

days of treatment (Fig. 3B). In particular, two of the Ugt1a1-

correlated triglycerides, 50:1 TG and 52:2 TG, were observed

to be more depleted in liver after one day of treatment than

after seven days of treatment. Levels of the Ugt1a1-correlated

triglycerides in the plasma of the one-day treatment group

were either not statistically significantly changed from the

vehicle group, or were significantly depleted in abundance

compared to the vehicle-administered animals. The largest

one-day triglyceride plasma level reduction was that of 50:1

TG which was observed to decrease by�41%� 11% (pFDR o
0.05), a significantly larger reduction after one day of treat-

ment than that of triglyceride as measured by blood chemistry

(Fig. 3B). The level in plasma of the Ugt1a1-correlated 20:4

cholesteryl ester was not statistically significantly changed

after one day of treatment compared to the vehicle-adminis-

tered group.

Although not part of the correlation network in Fig. 1A, the

abundances in liver tissue of eight observed phosphatidylcho-

line (PC) species and one octadecenoic acid containing 18:1

lyso-phosphatidylcholine (18:1 LPC) were also found to be

significantly altered. Six of these PCs and the 18:1 LPC were

found to be decreased in liver tissue after seven days of

treatment by between approximately 40% and 80% (Fig. 4).

In contrast, two PC species containing four double-bonds,

37:4 PC and 38:4 PC, were found to be significantly accumu-

lated in the liver tissue upon seven days of treatment (Fig. 4).

Of these nine lipids, only 37:4 PC was statistically significantly

altered after a single day of treatment of 200 mg kg�1, being

Fig. 2 Change in abundance of the three measured peptides from

hepatic Ugt1a1 for the single-day (open bars) and seven-day (closed

bars) 200 mg kg�1 per day treatment groups relative to the vehicle-

administered group of animals. Peptide amino acid sequences are

indicated. Also shown for comparison is the average change of the

five probesets for Ugt1a1 from the oligonucleotide microarray. All

changes shown are significantly different relative to the vehicle-admi-

nistered group (pFDR o 0.05), and significant differences (pFDR o
0.05) between 1 and 7 days of treatment are denoted by asterisks (*).

Error bars represent standard error of the mean.

Table 1 Plasma lipids correlated with hepatic Ugt1a1

52:4 TG 52:5 TG 50:1 TG 54:2 TG 54:6 TG 51:4 TG 50:4 TG 50:2 TG 52:2 TG 49:3 TG 50:3 TG 20:4 CE

Correlation to Ugt1a1a �0.75 �0.74 �0.72 �0.70 �0.71 �0.68 �0.65 �0.64 �0.64 �0.61 �0.61 +0.70

a The reported correlation value is the average of correlations to each of the three measured Ugt1a1 peptides (see Methods for details). pFDR o
0.15 for all correlations. TG = triglyceride, CE = cholesteryl ester.
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elevated relative to the vehicle group by +43% � 25%

(pFDR o 0.05).

Correlation network involving plasma ornithine and hepatic urea

cycle proteins

A second plasma-to-liver correlation network in the present

study was centered upon measured plasma levels of ornithine.

Fig. 5 is the network visualization of the correlation matrix

centered upon plasma ornithine measurements showing corre-

lation to liver analytes. There are four distinct measurements

of ornithine in Fig. 5 because plasma levels of ornithine were

detected using a gas chromatographic-mass spectrometric

molecular profiling technique which involves molecular frag-

mentation prior to detection. Fig. 6 shows the experimental

observations from this study overlaid on a schematic diagram

of the urea cycle.

Plasma levels of ornithine were consistent across the four

detected ornithine ions, and exhibited statistically significant

elevation only in the 200 mg kg�1 per day 7-day treatment

group relative to the vehicle-administered group of +39% �
11% (pFDR o 0.05), averaged over all four ornithine measure-

ments (Table 3). The other members of this correlation net-

work were all proteins measured using the mass spectrometric

proteomics platform applied to liver tissue samples. Nine liver

proteins were thus found to be correlated to plasma ornithine,

of which three, AS (arginosuccinate synthetase), Gapdh (gly-

ceraldehyde-3-phosphate dehydrogenase) and Rps17 (ribo-

somal protein S17), exhibited a significant change (pFDR o
0.05) between the seven-day treatment group and the

vehicle-administered group. Arginosuccinate synthetase protein

levels were determined by six observed peptides; all other protein

abundances in this network were determined based on the

average abundances of at least three peptide measurements each.

Three significant negative correlations were measured in this

network, between plasma ornithine and the hepatic proteins

AS, Cps1 (carbamoyl-phosphate synthetase 1, mitochondrial)

and Gapdh. In addition, it was found that all four measures of

plasma ornithine were mutually positively correlated, as

expected, with an average mutual correlation coefficient of

rpartial = +0.98, pFDR o 0.05, over all six possible pairwise

correlations.

Discussion

In this work we have explored the utility of correlation

networks spanning plasma and tissue to select among a

plethora of drug-induced changes and prioritize plasma-based

biomarkers of drug-induced alteration of hepatic function.

These correlation networks were generated solely based on

empirical measurements, with no a priori supervision or de-

sign. One such correlation network was seen to be centered

upon hepatic UDP-glucuronosyltransferase A1 (Fig. 1A) and

is of particular interest because of the established role of this

enzyme in catalyzing a common conjugation reaction in drug

metabolism.17 Additional unpublished data together with the

data presented here have demonstrated that the drug com-

pound is a potent enzyme inducer, and thus Ugt1a1-induction

and the associated correlation network which are observed

reflect hepatic drug exposure. The identification of specific

plasma lipids whose abundances vary co-ordinately with that

of Ugt1a1, namely the eleven triglycerides and the arachidonic

acid containing cholesteryl ester of the correlation network of

Fig. 1A, provided sensitive surrogates in plasma for drug-

induced hepatic Ugt1a1 production in the present study. The

negative, or inverse, nature of the correlation between the

eleven plasma triglycerides and hepatic Ugt1a1, together with

the observation that these eleven triglycerides were uniformly

lower in the plasma and generally accumulated in liver tissue

of the 7-day treatment group (Fig. 3A), is consistent with the

histopathological observations of fatty liver tissue.

Table 2 Liver analytes correlated with hepatic Ugt1a1

Symbol Common name
Correlation to
Ugt1a1b

7-Day 200 mg kg�1 per day treatment
group change relative to vehicle group

Ugt2b12_2 UDP glucuronosyltransferase 2B12 precursor +0.79 +90% � 28%
Ugt2b12_1 UDP glycosyltransferase 2, polypeptide B4 +0.78 +89% � 27%
Grp58_1a Glucose regulated protein, 58 kDa +0.70 +45% � 11%
Grp58_2a Glucose regulated protein, 58 kDa +0.72 +43% � 10%
Gjb2 Gap junction beta-2 (Connexin-26) +0.73 +42% � 22%
Dia1 Cytochrome-b5 reductase, microsomal form �0.73 �24% � 8%
Hadhb Hydroxyacyl-coenzyme A dehydrogenase +0.71 +25% � 13%*
Acox1 Acyl-coenzyme A oxidase 1, peroxisomal +0.72 n/s
Ak2 Adenylate kinase isoenzyme 2, mitochondrial �0.70 n/s
Aldh2_1a Aldehyde dehydrogenase 2, mitochondrial precursor +0.72 n/s
Aldh2_2a Aldehyde dehydrogenase 2, mitochondrial +0.72 n/s
Arg1 Arginase 1 �0.70 n/s
Ehhadh Enoyl-coenzyme A, hydratase +0.72 n/s
P4hb Protein disulfide-isomerase A3 +0.70 n/s
Psme1 Protease (prosome, macropain) 28 subunit, alpha �0.72 n/s
Rrbp1 Ribosome-binding protein 1 �0.73 n/s
Slc25a10 Mitochondrial dicarboxylate carrier +0.74 n/s
Ywhah Tyrosine 3-monooxygenase �0.71 n/s

a Two distinct isoforms were observed (see Results section). b The reported correlation value is the average of correlations to each of the three

measured Ugt1a1 peptides (see Methods for details); pFDR o 0.15 for all correlations. Significance for all changes shown is pFDR o 0.05, except for

that marked with asterisk (*), for which pFDR o 0.10. n/s = pFDR 4 0.10.
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In the 7-day treatment group, the eleven Ugt1a1-correlated

triglycerides exhibited reductions in plasma of similar magni-

tude as the blood chemistry measurement of triglyceride

(Fig. 3A). However, at the earlier one-day treatment point

(Fig. 3B) three of the Ugt1a1-correlated triglycerides, 50:1 TG,

50:2 TG and 54:2 TG, exhibited a statistically significant

reduction in circulating levels of between 30% and 40%, while

the blood chemistry triglyceride measurement was not signifi-

cantly altered at one day of treatment; indeed none of the

conventional blood chemistry measures were significantly

changed after one day after treatment. From a biomarker

perspective, the 50:1 TG, 50:2 TG and 54:2 TG Ugt1a1-

correlated triglyceride species may indeed be more sensitive

early blood-based biomarkers of perturbed lipid homeostasis.

Interestingly, lower plasma levels of the eleven Ugt1a1-

correlated triglycerides in the 7-day treatment group do not

completely coincide with a simple triglyceride sequestration

phenomenon, and exhibit a fatty-acid-dependent accumula-

tion or depletion in the liver. Levels of three of the plasma

triglycerides in the Ugt1a1 network, specifically those com-

prising fatty acids with relatively fewer unsaturated double

bonds and fewer carbon atoms—50:1 TG, 50:2 TG, and 50:3

TG—were in fact observed to be decreased rather than

increased in liver tissue after seven days of treatment, and by

approximately the same amount as the depletion in plasma,

indicating that the export process for these triglycerides was

not as substantially affected.

The observed pattern of hepatic triglyceride accumulation in

the Ugt1a1 network prompted us to investigate changes in

phosphatidylcholine (PC) levels in liver. Synthesis of PCs is an

important component of very low-density lipoprotein (VLDL)

formation, and as such PCs are essential for proper

Fig. 3 (A) Change in abundance of Ugt1a1-correlated lipid levels in the 7-day 200 mg kg�1 per day treatment group relative to the vehicle-

administered group, in plasma (open bars) and liver (closed bars). Also shown for comparison is the blood chemistry measure for triglyceride,

TRIG. All changes shown are significantly different relative to the vehicle-administered group (pFDR o 0.05). Error bars represent standard error

of the mean. (B) Change in abundance of Ugt1a1-correlated lipid levels in the 1-day 200 mg kg�1 per day treatment group relative to the vehicle-

administered group, in plasma (open bars) and liver (closed bars). Also shown for comparison is the blood chemistry measure for triglyceride,

TRIG. Significant changes relative to the vehicle-administered group (pFDR o 0.05) are denoted by asterisks (*). Error bars represent standard

error of the mean.
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triglyceride export. The changes in hepatic PC levels upon

treatment (Fig. 4) may indicate a significant, and fatty-acid

composition-dependent, alteration of phosphatidylcholine

synthesis.

Similar results have been described in recent studies. Wat-

kins et al.18 report that inhibition of phosphatidylethanolami-

ne-N-methyltransferase (PEMT), a component in one of the

primary pathways for hepatic PC biosynthesis, effects a sig-

nificant and specific accumulation of relatively long-chain

poly-unsaturated fatty acids in hepatic TGs. The measured

positive co-ordination between plasma 20:4 cholesteryl ester

(CE) accumulation and Ugt1a1 induction by treatment is

consistent with recent reports of a relationship between PEMT

activity and PC biosynthesis necessary to ensure proper flux of

cholesterol esters between liver and plasma;18,19 indeed, the

accumulation of 20:4 CE and its correlation with Ugt1a1 drug

metabolism may indicate a drug-induced inability to maintain

this flux at normal levels. Taken together, one hypothesis that

may be pursued in subsequent studies is that the drug com-

pound or its metabolites impair triglyceride export by altering

the synthesis of phosphatidylcholine, impairing VLDL forma-

tion and triglyceride export from the liver and contributing to

the observed steatosis.

The Ugt1a1-centered network of Fig. 1A also contains

components within liver tissue which are involved in mito-

chondrial and peroxisomal fatty acid beta-oxidation, indicat-

ing that these processes were co-ordinately affected by drug

metabolism as well. In the correlation network, the gene

transcript for hydroxyacyl-coenzyme A dehydrogenase

(Hadhb) was observed to be increased in abundance as a

result of drug treatment and was found to be positively

correlated with Ugt1a1 induction. Hadhb is a multienzyme

complex subunit involved in mitochondrial fatty acid oxida-

tion. There were also components of peroxisomal beta-oxida-

tion present in the Ugt1a1-centered network. The three

enzymes of the classic peroxisomal beta-oxidation cycle are

acyl-coenzyme A oxidase, enoyl-coenzyme A hydratase, and 3-

ketoacyl-CoA thiolase. In the Ugt1a1 network we observed

two of these enzymes positively correlated to Ugt1a1: acyl-

coenzyme A oxidase 1 (Acox1), the enzyme which catalyzes

the first step in peroxisomal beta-oxidation of fatty acids, and

enoyl-coenzyme A hydratase (Ehhadh), although enoyl-coen-

zyme A hydratase is also found in the mitochondria. While

these were significantly positively correlated to Ugt1a1 and

therefore drug metabolism processes, they did not exhibit a

statistically significant univariate change upon drug treatment;

this may represent a case in which there was a lack of sufficient

statistical power to distinguish a univariately significant

group-based change, but sufficient statistical power to identify

Fig. 4 Change in liver tissue abundance of observed PC and lyso-PC

(LPC) levels in the 7-day 200 mg kg�1 per day treatment group relative

to the vehicle-administered group. All shown changes are significant

(pFDR o 0.05). Error bars represent standard error of the mean.

Fig. 5 Plasma ornithine-centered correlation network. ‘Ornithine

(M+)’ denotes the intact ornithine molecular ion; the other three

ornithine nodes are fragment ions of ornithine as detected by the mass

spectrometer. Only those analytes within one correlation link from a

measured ornithine ion are shown. Network nodes are colored accord-

ing to significance in the test between the vehicle-administered group

and the group receiving 200 mg kg�1 per day for 7 days. Analytes in

this network are listed in Table 3. Topological distance between

network nodes contains no information.

Fig. 6 Representation of the urea cycle, with components observed in

the present study in bold. Dashed arrows indicate observed correla-

tions in the ornithine-centered correlation network; block arrows

indicate direction of univariate abundance change in the 7-day

200 mg kg�1 per day treatment group relative to the vehicle-adminis-

tered group.
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significant pairwise correlation. Peroxisomes are a primary site

for the beta-oxidation of very long-chain fatty acids,20 and the

fatty-acid composition dependence of accumulated liver TGs

observed in Fig. 3A may further reflect modulated peroxiso-

mal activity. Taken together, the Ugt1a1 network findings

may implicate mitochondrial and peroxisomal beta-oxidation

processes being co-ordinately affected by treatment.

Both the Ugt1a1-centered network and the plasma ornithine

centered network of Fig. 5 include components of the urea

cycle. Because urea cycle enzymes exist almost exclusively in

the liver, they and their products are of special interest as

specific markers of liver injury.21 The observed treatment-

related inverse correlations in the ornithine-centered network

between plasma ornithine and argininosuccinate synthetase

(AS), and between plasma ornithine and carbamoyl-phos-

phate synthase I (Cps1), are consistent with a drug-induced

deficiency in the first steps of the urea cycle. The observed

increase in plasma ornithine levels of approximately +40% in

the 7-day 200 mg kg�1 per day treatment group relative to the

vehicle group, together with the observed decrease in AS

protein levels in the same comparison of approximately

�50%, is also consistent with the observed inverse relationship

between ornithine and AS. While ornithine is not a direct

substrate of AS, it is a substrate of ornithine transcarbamy-

lase, the enzyme which precedes AS in the urea cycle and

produces citrulline, the substrate for AS.

It has been reported that juvenile visceral steatosis mice

have lower levels of urea cycle enzymes in the liver.22 These

mice have a defect in a carnitine transporter, which results in

both steatosis and lower levels of all urea cycle enzymes.23,24 It

has also been shown that long-chain fatty acids can suppress

glucocorticoid-mediated induction of genes encoding urea

cycle enzymes.25 Taken together, these studies indicate that

there may be a link between fatty acid metabolism and the

urea cycle that is observable through monitoring of plasma

biomarkers such as ornithine.

Plasma ornithine is also seen to be positively correlated with

a number of ribosomal proteins. These findings are intriguing

given the role of ornithine as a starting material for polyamine

biosynthesis and the reported potential relationship between

ribosomal protein expression and the polyamine synthesis

pathway.26,27

Experimental

Animal experiments

Twenty (20) male Wistar Hannover rats, approximately 2

months of age at study initiation (220 g to 300 g total mass

each) were used. Animals were housed 2 or 3 per cage during

an acclimatization period of 10 days prior to dosing. During

the course of the study, 5 animals per group were housed in

individual metabolism cages. A first group of five animals was

dosed by oral gavage in 10 ml kg�1 vehicle solution only (0.5%

w/v hydroxypropyl methylcellulose in 0.1% w/v aqueous

polysorbate 80); a second group of five animals was dosed

with 200 mg kg�1 per day of an experimental drug compound

in 10 ml kg�1 vehicle solution for 7 days beginning on day 1

and necropsied on day 8 when tissues were taken for pathol-

ogy; a third group of five animals was dosed with 20 mg kg�1

per day with the experimental drug compound in 10 ml kg�1

vehicle solution for 7 days beginning on day 1 and necropsied

on day 8; a fourth group of five animals received a single dose

of the compound (200 mg kg�1) on day 1 and were necropsied

24 hours after dosing. All experiments were approved by and

performed in compliance with institutional guidelines of the

Molecular Toxicology and Safety Assessment Division of

AstraZeneca R&D.

Sample collection

Blood plasma samples were taken from the orbital plexus prior

to necropsy. Selected organs for histopathology, including

liver, kidney, heart, adrenal glands, lungs, pancreas,

spleen, stomach, thymus and testes, were retained at necropsy.

Samples were fixed in 10% (w/v) phosphate-buffered formalin

and embedded in paraffin wax. Sections were cut and stained

with haematoxylin and eosin for light microscopy.

Samples from the liver were also freeze-sectioned and stained

for fat with Oil Red-O. In addition, sections from the

liver (right lateral lobe) were cut into 100 mg pieces and fresh

Table 3 Analytes in plasma ornithine correlation network

Symbol Common name
7-Day 200 mg kg�1 per day treatment
group change relative to vehicle groupa

Ornithine (M+) Plasma L-ornithine molecular ion +44% � 13%
Ornithine_1 Plasma L-ornithine molecular fragment ion +37% � 10%
Ornithine_2 Plasma L-ornithine molecular fragment ion +38% � 10%
Ornithine_3 Plasma L-ornithine molecular fragment ion +38% � 11%
AS Arginosuccinate synthetase �52% � 7%
Gapdh Glyceraldehyde-3-phosphate dehydrogenase �36% � 10%
Rps17 Ribosomal protein S17 +28% � 11%
Cps1 Carbamoyl-phosphate synthetase 1, mitochondrial n/s
Rps13 Ribosomal protein S13 n/s
Rps15a Ribosomal protein S15a n/s
Rpl3 Ribosomal protein L3 n/s
Rpl13 Ribosomal protein L13 n/s
Rplp2 Ribosomal protein, large P2 n/s

a Significant univariate changes in abundance between 7-day treatment group and vehicle-administered group are shown (pFDR o 0.05); n/s = not

significant (pFDR 4 0.05). The only member of this network that exhibited significant univariate change between the 1-day treatment group and the

vehicle-administered group was arginosuccinate synthetase (�40% � 10%, pFDR o 0.05).
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frozen in liquid nitrogen at necropsy for proteomics, tran-

scriptomics and metabolomics.

LC-MS analysis of plasma and liver lipids

Plasma samples were prepared for lipid analysis by adding 600

ml of isopropanol to 150 ml of whole plasma. Samples were

vortexed to mix, and centrifuged to precipitate and remove

proteins, and the supernatant was removed for analysis. To

prepare samples for LC-MS analysis, 400 ml of water were

added to 100 ml of the supernatent, and 200 ml of this mixture

were transferred to a Waters 717 autosampler and separated

on a Waters 600-MS HPLC system with a C4 column at 1 ml

min�1 with a gradient from 5% methanol–water to 100%

methanol containing 10 mM ammonium acetate and 0.1%

formic acid. The output of the HPLC was directed to a

ThermoFinnigan TSQ 700/7000 (ThermoFinnigan, San Jose

CA) equipped with electrospray to aquire LC-MS andMS/MS

spectra. The scan cycle consisted of a single full scan (1 s per

scan) mass spectrum acquired over m/z 200–1700 in the

positive ion mode.

Twenty-five milligrams of thawed liver tissue was

homogenized by ultrasound-based acoustic disruption using

a Covaris E100 instrument (Covaris Inc., Woburn, MA).

Homogenate samples were treated with isopropanol, vortexed

and centrifuged to precipitate protein and to extract lipids, and

the supernatant was collected for analysis as described

above. The LC-MS analysis proceeded as described above

for plasma.

LC-MS data files were converted to CDF format using

Xcalibur software (ThermoFinnigan, San Jose, CA). The

converted files were evaluated with in-house peak detection,

peak integration and peak alignment software (BG Medicine,

Waltham MA and TNO Pharma, Zeist, The Netherlands).

This resulted in approximately five-hundred molecular ion

peaks per plasma sample data set and a similar number per

liver sample data set. Noise filtering was subsequently per-

formed for each mass trace data set by applying an in-house

signal processing algorithm (BGMedicine, Waltham, MA and

TNO Pharma, Zeist, The Netherlands) that is based on

information entropy evaluation.11,28 Subsequently, a mini-

mum ion count intensity threshold was applied, which resulted

in 168 aligned peaks per sample for plasma analyses, and 112

aligned peaks per sample for liver tissue analyses. The result-

ing LC-MS data set peak intensities were normalized using an

ANOVA multiplicative model with parameters estimated

using an interative maximum likelihood method.29,30

Identification of molecular ion peaks was performed by

tandem mass spectrometry and by matching with in-house

mass spectra databases. Subsequently, non-monoisotopic

peaks were removed from the data set, and in the case of

multiple ion adduct peaks, the highest intensity peak was

selected. Thus the final data set for plasma lipids consisted

of 80 unique identified lipids, and the final data set for liver

tissue comprised 43 unique identified lipids. All subsequent

statistical analyses were performed on these identified lipid

analytes. Exogenous calibration standards for every analyte

were not included in the analyses, and as such quantification is

relative and not absolute.

LC-MS analysis of liver proteins

One-hundred milligrams of tissue dissected from thawed liver

sample were cut into four 25 mg pieces. Each piece was

homogenized by ultrasound-based acoustic disruption using

a Covaris E100 instrument (Covaris Inc., Woburn, MA).

Unbroken cells, nuclei and extracellular debris were removed

using low-g centrifugation, and the resulting homogenate was

subjected to membrane/cytosol fractionation using high-speed

ultracentrifugation. Cytosolic proteins were subjected to C4

reversed-phase column chromatography to isolate three frac-

tions for analysis. Each of the three protein cytosolic fractions

was digested using trypsin, and from each fraction acidic

peptides were isolated by anion exchange chromatography

and desalted by reversed-phase column chromatography prior

to LC-MS analysis. The membrane-bound protein fraction

was isolated by R1-C18 reversed-phase chromatography and

trypsin digested. Digestion reagents and undigested and par-

tially digested materials were separated from the tryptic pep-

tide fraction by HPLC chromatography. The resulting

membrane tryptic peptide fraction was dried in vacuo. Cyto-

solic peptides from the three acidic peptide sets and the

membrane tryptic peptide fraction were measured by re-

versed-phase LC-ESI-MS using a Waters HPLC system and

Micromass Q-Tof mass spectrometer (Waters Corp., Milford

MA). Raw LC-MS data files were analyzed using in-house

peak detection, peak integration and peak alignment software

(BG Medicine, Waltham MA). Noise was filtered from the

LC-MS data sets using the entropy-based signal processing

algorithm described above. Subsequently applying a minimum

ion count intensity threshold, and requiring peptide ion peaks

to be present in at least 17 of the 20 samples, yielded 2689

aligned LC-MS peptide ion peaks across the four fractions per

sample. The resulting data set peak intensities were normalized

using the ANOVA multiplicative model as described above.

Peptide MS/MS spectra were acquired during LC-MS/MS

analyses that were interspersed among LC-MS profiling scans

at a frequency of approximately one MS/MS acquisition per

three MS acquisitions. Spectra were converted to Sequest .dta

files using MassLynx PeptideAuto software (Waters Corp.,

Milford MA). In-house proteomics data analysis algorithms

and software (BG Medicine, Waltham, MA) were used to

incorporate Sequest, Mascot, X!Tandem and manual MS/MS

spectrum annotation results for final peptide identification.

Peptides were matched to proteins and isoforms using in-

house algorithms (BG Medicine, Waltham, MA) incorporat-

ing public sequence databases. Searches were initially filtered

to include only mammalian sequences, and subsequently to the

Rattus norvegicus genome. Identifications were made of 1723

peptides, and all subsequent statistical analyses were per-

formed on 1723 distinct individual peptide measurements,

and not on reconstructed protein measurements. Protein or

peptide calibration standards were not included in the mass

spectrometric analyses, and as such quantification is relative

and not absolute.

Plasma GC-MS analysis

Plasma samples were extracted with methanol, and extracts

were centrifuged to remove precipitated proteins. Extract
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supernatants were derivatized by oximation and subsequent

silylation. Nine internal standards were added, namely cholic

acid-D4, alanine-D4, leucine-D3, DFBP, Phe-D5-2TMS, glu-

tamic acid-D3, trifluoroacetylanthracene, glucose-D7, and

DCHP. The derivatized samples were loaded in an ATAS

Focus autosampler and molecules were separated on an

Agilent 6890 system (Agilent, Santa Clara, CA) with a pro-

grammed temperature vaporizer injector. Molecules were

analyzed with electron impact ionization on an Agilent 5973

MSD system (Agilent, Santa Clara, CA) in full scan monitor-

ing mode. Ion peaks measured across samples were aligned

using an in-house algorithm which uses the exogenous internal

standards to yield alignment coefficients for each data set.

After further applying a minimum ion count intensity thresh-

old, and requiring ion peaks to be present in at least 17 of the

20 samples, 924 ion peaks remained in the data set. Normal-

ization scaling factors for each sample data set were calculated

using internal standards and maximum likelihood optimiza-

tion as described above and in Hartemink et al.29 Ion peaks

were associated with parent analytes using an in-house data-

base of electron impact ionization spectra which were matched

to the obtained fragmentation spectra; these 427 identified ion

peaks were used as input to subsequent statistical analyses.

Exogenous calibration standards for every analyte were not

included, and as such quantification is relative and not abso-

lute.

Liver mRNA analysis

RNA was isolated from frozen liver tissue using an internal

protocol (AstraZeneca, Södertälje, Sweden). Affymetrix Gen-

eChip oligonucleotide microarray analysis was carried out on

labeled and fragmented cRNA prepared from total RNA with

the Affymetrix U34A array, version December 2003, and

analyzed using the Affymetrix GeneChip Scanner system

(Affymetrix, Santa Clara, CA). The CEL files were quantile

normalized, and positional-dependent nearest-neighbor out-

put was computed for subsequent analysis as reported else-

where.31 The resulting quantification from the Affymetrix

GeneChip platform is relative and not absolute.

Statistical and correlation network analyses

Molecular profiling data were natural-logarithm transformed

and analyzed for each bioanalytical platform by univariate

analysis of variance (ANOVA) and ANOVA contrasts. Be-

cause the number of analytes measured with any of the plat-

forms used far exceeds the number of samples, the p-value

resulting from ANOVA was adjusted to the false discovery

rate-adjusted p-value (pFDR).
32 Univariate results are ex-

pressed as mean � standard error of mean. Partial pairwise

Pearson correlations controlling for treatment group means,

rpartial, were calculated for all pairs of analytes measured.16

Partial correlations set the mean value of the analyte level to

zero for each of the three treatment groups; this is done in

order to avoid trivial correlations that are driven by group

mean differences. Statistical significances of correlation values

were determined using the Student’s t-transformation and

were also adjusted to the false discovery rate-adjusted p-

value.32 Data from the vehicle group were not used in correla-

tion calculations in this study; only the fifteen animals treated

with the drug were considered (namely, five from each of

the three dosage groups of 200 mg kg�1 per day for 7 days, 20

mg kg�1 per day for 7 days and 200 mg kg�1 for a single day).

The criteria for inclusion in the correlation networks dis-

cussed in the text were as follows. In order to merit inclusion in

the correlation network of Fig. 1A, a plasma analyte must

have exhibited a partial correlation averaged across the three

observed Ugt1a1 peptides of Fig. 2 of |rpartial| Z 0.60 group,

with a false discovery rate-adjusted p-value less than 0.15; for

analyte correlations within liver tissue, an analyte must have

exhibited a partial correlation averaged across all observed

peptides or probesets, for proteins and gene transcripts re-

spectively, of |rpartial| Z 0.70 with a false discovery rate-

adjusted p-value less than 0.15. In Fig. 1A, correlations

between plasma analytes are not shown, for clarity. For the

correlation network of Fig. 5, the partial correlation, rpartial, of

each liver peptide to each plasma ornithine fragment was

calculated. In order for a liver protein to merit inclusion into

the final correlation network, the average over all rpartial
values across all peptides of that protein and all observed

plasma ornithine fragments must have been |rpartial| Z 0.60

with a false discovery rate-adjusted p-value less than 0.15.

Correlation network visualizations were generated using

in-house software developed by BG Medicine (BG Medicine,

Waltham, MA).

Conclusion

In summary, the use of correlation network analyses spanning

different tissues to prioritize and select plausible candidate

biomarkers in biological fluids, as demonstrated in the present

study, has been shown to be a practical and compelling

approach to the integration and application of high through-

put molecular profiling data. While empirical correlations do

not confer information about causality or directionality, they

are shown here to bestow an important level of plausibility

that the selected plasma biomarkers reflect processes relevant

to hepatic drug exposure.

Indeed, expecting that observed correlations are conse-

quences of the underlying biochemical reactions and enzy-

matic regulations of metabolism, a number of intriguing

relationships were revealed which would merit subsequent

study, such as the role of aldehyde dehydrogenases in the

Ugt1a1 network, or the drug-induced inverse correlation of

glyceraldehyde-3-phosphate dehydrogenase (Gapdh) to plas-

ma ornithine. However, these explorations were ancillary to

the discovery and selection of plasma biomarkers in the

current study.

The challenge of sorting through often hundreds of ob-

served biomolecular changes upon drug exposure in pursuit of

an appropriate biomarker in drug discovery and development

is a significant one for scientists, industry and regulators alike.

It has become evident that large group-specific univariate

changes often do not capture the relevant complexity of

biological processes, and that further empirical approaches

such as the one presented here will be necessary for successful

biomarker selection.
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